Headquartered in Kolkata, India

Products:
- Lead Acid Storage Batteries: 2.5Ah to 20,000 Ah
- Home UPS
- DC Power Solution
- Standby Products & Solutions

- 9 Manufacturing units in India
- 1 R&D Center in India
- 5 Wholly owned Subsidiaries in India
- Turnover of USD 1.3 Billion

An Integrated Manufacturing Unit for Standby Systems and DC Power solutions in Kolkata, India.
INVERTER BATTERIES

After 10 years of experience in VRLA with Shin Kobe, Exide (INDIA) has finally launched new Index NXT with the cycle life unmatched with competition nationally and internationally with its unique feature of 5 hours quick recharge option.
FEATURES

- **Fast recovery** from deep discharge
- **Extended cycle life**
- **Fast recharge capability**
- **Deep cycle** application
- **Excellent charge retention**
- **Free from orientation constraints**

TECHNICAL SPECIFICATION

Battery Type

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Nominal Voltage (V)</th>
<th>Rated Capacity (Ah) at 27°C</th>
<th>Dimensions (mm)</th>
<th>Weight (Kg) ± 5%</th>
<th>Internal Resistance (m-ohm)</th>
<th>Max Discharge Current (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20 hr 1.75 V/cell</td>
<td>10hr 1.75 V/cell</td>
<td>5 hr 1.75 V/cell</td>
<td>3 hr 1.75 V/cell</td>
<td>2 hr 1.75 V/cell</td>
</tr>
<tr>
<td>NXT 17-12</td>
<td>12</td>
<td>17</td>
<td>15.5</td>
<td>14.0</td>
<td>13.0</td>
<td>12.0</td>
</tr>
<tr>
<td>NXT 26-12</td>
<td>12</td>
<td>26</td>
<td>23.5</td>
<td>21.0</td>
<td>19.5</td>
<td>18.0</td>
</tr>
<tr>
<td>NXT 34-12</td>
<td>12</td>
<td>34</td>
<td>30.5</td>
<td>34.0</td>
<td>31.5</td>
<td>29.5</td>
</tr>
<tr>
<td>NXT42-12</td>
<td>12</td>
<td>42</td>
<td>38.0</td>
<td>34.0</td>
<td>31.5</td>
<td>29.5</td>
</tr>
<tr>
<td>NXT50-12</td>
<td>12</td>
<td>50</td>
<td>45.5</td>
<td>58.5</td>
<td>52.5</td>
<td>49.0</td>
</tr>
<tr>
<td>NXT65-12</td>
<td>12</td>
<td>65</td>
<td>58.5</td>
<td>52.5</td>
<td>49.0</td>
<td>45.5</td>
</tr>
<tr>
<td>NXT84-12</td>
<td>12</td>
<td>84</td>
<td>76.4</td>
<td>84.0</td>
<td>81.0</td>
<td>75.0</td>
</tr>
<tr>
<td>NXT100-12</td>
<td>12</td>
<td>100</td>
<td>90.0</td>
<td>81.0</td>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td>NXT150-12</td>
<td>12</td>
<td>150</td>
<td>135.0</td>
<td>121.5</td>
<td>112.5</td>
<td>112.5</td>
</tr>
<tr>
<td>NXT200-12</td>
<td>12</td>
<td>200</td>
<td>180.0</td>
<td>162.0</td>
<td>150.0</td>
<td>140.0</td>
</tr>
</tbody>
</table>

Note: Batteries are dispatched from factory at minimum 90% state of charge. Full capacity is achieved after a minimum ten numbers of charge – discharge cycle at full depth or 3 months of continuous float operation.
CAPACITY RETENTION

Retention of charge of NXT Series under ideal storage conditions

No supplementary charge required: Carry out supplementary charge before use if 100% capacity is required.

Supplementary charge required before use. This supplementary charge will help to recover the capacity and should be made as early as possible.

Supplementary charge may often fail to recover the capacity. The battery should never be left standing till this state is reached.

NXT SERVICE LIFE

Float Service Life

Cycle Service Life

(1) Final Voltage: 1.75V/Cell
(2) Charge Current: 0.2CA
(3) Ambient Temperature: 25°C

EFFECT OF TEMPERATURE ON CAPACITY

0.05CA discharge capacity at 22°C corresponds to 100%.

NXT DISCHARGE CHARACTERISTICS
NOTES OF OPERATIONS

CHARGING CHARACTERISTICS:

a) Normal Recharge:

Batteries to be recharged in cc – cv model only

<table>
<thead>
<tr>
<th>Mode of operation</th>
<th>Voltage setting per 12V unit for Ambient temperature 20 – 30°C</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float</td>
<td>13.7V +/- 0.1V</td>
<td>Maximum: 0.3 CA Minimum: 0.1 CA</td>
</tr>
<tr>
<td>Cyclic</td>
<td>14.7V +/- 0.1V</td>
<td></td>
</tr>
</tbody>
</table>

Temperature Compensation: (Reference 25°C)

- Float: -18mV / °C / 12V unit
- Cyclic: -30mV / °C / 12V unit

b) Fast Recharge option:

During operation, if the battery bank is subjected to regular (daily) deep discharge in excess of 50% (cumulative basis), the fast recharge option may be exercised.

Fast recharge, following pattern to be followed:-

- **Step 1:** 0.3C - 14.5V
- **Step 2:** 0.1C - 14.5V
- **Step 3:** 0.05C - 14.5V
- **Step 4:** 0.02C - 14.5V

Total duration for the four steps shall be 5.0 hours for a recharge after a 70% DOD. However, this mode of recharge will require an equalization once a month at the recommended float voltage for a period of 12 hours uninterrupted.

Caution on Ripple

The maximum limits of the A.C. content of the D.C. shall be **5A A.C. (rms) per 100 Ah C20 capacity** during float charge. The A.C. current induced battery temperature rise should be below 3°C. At all times the average D.C. float current must be kept positive.

Heat Dissipation

A VRLA battery under normal float condition shall dissipate heat into the atmosphere. For the overall heat load calculation taking into account a worst case operation, the rate of heat dissipation may be taken as 0.45 Watts/100 Ah C20 capacity/Cell.

Hydrogen Evolution

Hydrogen gas evolved by a lead acid battery may be estimated from the following formula:

Hydrogen gas evolved per hour = \(0.45 \times 10^{-3} \times n \times i \times C \text{ m}^3 \) at N.T.P.

Where,
- \(n \) = number of 2V cells
- \(i = 0.2 \text{ A/100 Ah} \) for a VRLA cell
- \(C = \text{C20 capacity of Cell} \)

To design for the ventilation (air flow) requirement so that the hydrogen percentage in the air is always below 4% (lower explosive Limit), the air flow rate may be estimated as:

\[Q = d \times s \times 0.45 \times 10^{-3} \times n \times i \times C \text{ m}^3/\text{hr} \]

Where,
- \(d = \text{dilution ratio (100.4)/4 =24} \)
- \(S = \text{factor of safety, eg.5} \)

For a VRLA, the above may be simplified as:

\[Q = 0.0108 \times n \times C \]
Paralleling of Battery Strings

(a) Paralleling of a **maximum of three strings is allowed** provided they are all of the same make and Ah capacity and of same age.

(b) Adequate care shall be taken in ensuring that all inter-unit connecting cables have equal length and cross-section. All cables to the system, from each of the strings, shall also be of same length and cross-section.

(c) **Total charging current**, in the case of parallel strings, to be taken care of so that each of the strings get the recommended level of Amperes – minimum 10% and maximum 30%, of the rated C20 capacity of each of the 12V blocks. For inter-block connection **flexible copper cable with suitable lugs** are recommended. Cable cross section may be estimated at 2.8Amps/mm2 at the maximum anticipated discharge load. Even though the NXT batteries are designed to perform anywhere between (-) 20 to (+) 50°C, for optimum battery life **avoid prolonged operation in ambient in excess of 35°C**. Above 27°C, for every 8°C rise of weighted average operating temperature, battery life is **reduced by 50%**. Test **discharge** on installation and **commissioning**, if necessary, should be conducted only **after 48 hours of uninterrupted float charge with load disconnected**. Ensure that batteries are put to **recharge immediately after any discharge**. Under no circumstance the gap between the end of discharge and initiation of recharge should be **more than 24 hours**.

Standard Maintenance Recommentions

(a) Visual check every 3 months to note any physical abnormality like bulge, crack or leakage etc.

(b) Measure **float voltage of individual units** once in 3 months and record the data.

(c) Test discharge the battery bank at least **once in 12 Months** to check battery health.

(d) Keep the **battery tap clean** with the help of a dry cotton cloth periodically. Inspect the inter-unit connection points for any solution etc. The inter-unit connection are to be checked for lightness **once a year**.

(e) If battery bank is placed on steel racks / cabinets ensure an **insulation between the battery base and the steel tray**. This could be a coat of durable (acid-resistant) paint or any other insulating medium. Steel racks should preferably be well grounded.