Exide Industries Ltd. India, is the largest storage battery manufacturer in South and South East Asia and has pioneered battery technology in India for over 60 years.

**INVERTER BATTERIES**

Exide India InvATubular 400, 500 & 750 the next generation tubular batteries designed specially to withstand long and frequent powercuts. The ULTIMATE INVERTER BATTERIES.

**FEATURES**
- Ironclad® Tubular Technology
- Electrolyte level indicator
- High Acid volume per ampere hour
- Deep cycle design
- Tower type design
- Common Side Venting

**ADVANTAGES**
- Very long life
- User friendly
- Acid volume per ampere hour is 30% more than that of ordinary tubular batteries. It acts as a coolant and also ensures very low maintenance
- Suited for use in areas of frequent power cuts (800 to 1000 cycles of deep discharge as against 300/400 cycles of other batteries)
- Can withstand overcharge better
- Occupies less floor space, totally new look
- Less pollution, environment friendly
- Ensures consistent quality

**APPLICATION**
The next generation tubular battery designed specially to withstand long and frequent powercuts. It is the ultimate Inverter battery. In case of powercuts it acts as a backup special source for power supply.

### TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity at 27°C when discharged at C20 upto 1.75 vpc (1.280 sp. gr)</th>
<th>Dimension (+/-3mm)</th>
<th>Weight (Kg+/-5%)</th>
<th>Volume of Electrolyte (1220 Sp. Gr)</th>
<th>Initial charge Minimum Ah input (AH)</th>
<th>Initial Charge at Constant Current (A)</th>
<th>Constant Potential Limiting Current (Amps)</th>
<th>Trickle Charge (Current in mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 400</td>
<td>115Ah</td>
<td>Length 500</td>
<td>Width 187</td>
<td>Height 416</td>
<td>29.00</td>
<td>53.80</td>
<td>20.28</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.0</td>
<td>6.0</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>IT 500</td>
<td>150Ah</td>
<td>Length 500</td>
<td>Width 187</td>
<td>Height 416</td>
<td>33.77</td>
<td>59.81</td>
<td>20.58</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.4</td>
<td>7.2</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>IT 750</td>
<td>200Ah</td>
<td>Length 500</td>
<td>Width 187</td>
<td>Height 416</td>
<td>41.44</td>
<td>66.00</td>
<td>19.80</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.6</td>
<td>10.8</td>
<td>4.5</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>720</td>
</tr>
</tbody>
</table>

*The height mentioned is upto terminal top.

**INITIAL CHARGING INSTRUCTIONS**

1. Filling in Specific Gravity 1.220 +/- 0.005 at 27°C
2. Rest Period 12 hrs.
3. Minimum Ah input 450Ah for IT400, 540Ah for IT500 and 810Ah for IT750
4. In order to reduce the charging time, the following routine may be adopted. For IT400, the initial charging current may be 12A upto 2.36vpc followed by 6A upto 2.75vpc. For IT500, the initial charging current may be 14.4A upto 2.36vpc followed by 7.2A upto 2.75vpc. For IT750, the initial charging current may be 21.6A upto 2.36vpc followed by 10.8A upto 2.75vpc.

However, in both cases, minimum Ah input to be given. Under the circumstances, battery temperature should exceed 50°C.

5. Conditions of fully charged a) 3 consecutive hourly readings of specific gravity and voltage become constant
   b) Top of charge voltage will be around 16.2V – 16.5V
   c) All cells should gas freely
   d) Minimum Ah has been given

6. Specific Gravity at fully charged condition 1.250 +/- 0.005 at 27°C
NORMAL RECHARGING INSTRUCTIONS
Recharging through Inverter at constant potential mode of 14.4V with limited current as specified. After battery potential reaches 14.4V, the battery should continue in trickle charge mode at constant potential of 13.5V.

BATTERY SELECTION CHART

<table>
<thead>
<tr>
<th>Electrical Load</th>
<th>System Voltage</th>
<th>Reco. Inverter Rating</th>
<th>Recommended Battery for Different Back-up time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 Hrs.</td>
</tr>
<tr>
<td>4 Tube + 4 Fan</td>
<td>12</td>
<td>650 VA</td>
<td>2P IT750</td>
</tr>
<tr>
<td>4 Tube + 5 Fan + 1 TV</td>
<td>12</td>
<td>850 VA</td>
<td>3P IT750</td>
</tr>
<tr>
<td>8 Tube + 9 Fan + 1 TV</td>
<td>24</td>
<td>1450 VA</td>
<td>2S X 2P IT750</td>
</tr>
</tbody>
</table>

NOTE: If the limit current of one battery is ‘A’ amp, for ‘N’ no. batteries in parallel, the limit current for charging of inverter should be AxN amp. Otherwise there will be problem during charging in parallel connection. This point should be taken in consideration before putting batteries in parallel combination.

S= Series connection; P= Parallel connection.
2S X 3P = A string containing 2 nos. batteries in series and 3 nos. such strings in parallel.

Statutory Notice:
All batteries contain lead, which is harmful for humans and environment. As per statutory requirements, the used battery must be returned to the authorized dealer, manufacturer or at the designated collection centres.