

EHP Series 19" & 23" Rack mounted batteries designed for Datacenter Applications

Standard Battery Installation in 19" & 23" Racks

- Single cabinet solutions housing battery as well as UPS & other electronics
- Standard dimensions leading to ease of system design & modularity
- Dedicated battery cabinets/racks for higher energy requirements

Best Practices - Datacentre Battery Installation

Advantages of Battery Installation in 19" & 23" Racks over regular installation

EXIDE

 \sim

19- and 23-inch rack

- Standard design : Dimensions are defined in internation standard IEC 60297-3-100.
- Lower Footprint : Lower footprint compared to conventional rack design.
- Knockdown design: Enclosures are shipped flat in partially assembled sections that provide the required compactness and also ensuring ease of assembly.
- Increased efficiency: The UPS and the battery bank is placed on different chassis of a server rack, reducing the complexity and length of cable connectors and thus minimizing voltage drop.

Regular 12V rack

 Non-standard design : rack dimensions are modified based on available room layout.

E X(1

- Standard Footprint : Approx. 7-10% higher footprint compared to standard rack (EHP-FT batteries are considered).
- Fabricated rack design : Usually ship assembled and ready to roll into place. Based on specific requirement, knock-down arrangement can be made but the assembly is complex and time-consuming.
- Compromised efficiency: The UPS and the battery bank is usually placed in different rooms, increasing the complexity and length of cable connectors.

19- and 23-inch rack

- *Ease of installation :* Rigid positive & negative copper bus bars ensuring minimal resistance in current collection and simple electrical circuitry.
- Simple scalability & flexibility: Adding more battery units to the server rack is a simple way to extend UPS system as the infrastructure develops and expands.
- Seismic Protection : Seismic-rated enclosures include heavy-duty, torsion-resistant construction to withstand industrial vibrations and other severe seismic movement.
- Device Management : Rack-mountable KVM switches allow you to control dozens or even hundreds of servers from a single keyboard, monitor and mouse.

Regular 12V rack

 Difficult installation : Connections can sometimes be cumbersome esp. with X-X layout battery installations.
Insulated front covers & terminal take-off covers have to be provided to ensure safety of installation.

- No scalability & flexibility: New racks are necessary to extend UPS system.
- Seismic Protection : Seismic-resistant rack design construction to withstand industrial vibrations and other severe seismic movement.
- ✤ Device Management : Not in scope.

SEISMIC DESIGNING METHODOLOGY

Design Assessment of 19- and 23-inch rack

- □ 19- and 23-inch rack is designed based on IEC 60297-3-100 guidelines.
- □ These standard rack designs are validated as per IS specification IS: 1893 (Part 1): 2002.
- □ The rack design is validated for 5 tier chassis design with 48V EHP-FT battery system on each chassis.
- □ High tensile material grade steel of E350 is used in simulation.
- □ Module design is validated to withstand ground acceleration of seismic zone 5 category.
- **G** For Response Spectrum analysis, max. natural frequency is considered as 200 Hz as per provided data by ANSYS
 - India in collaboration with Indian seismological department.
- □ Module design is suitable to withstand 2.5 g load with very min. structural displacement less than 2 mm.
- □ Overall design safety of factor is greater than 1.5 (recommended).

SEISMIC DESIGNING METHODOLOGY

Response Spectrum Analysis

In seismic, max. impact will occur in lateral vibration (SaX).

2023**/**RT

Ansys / Mechanical

Observed stress value is lesser than Allowable stress limit.

Max. allowable stress = 233 MPa

Max. Stress < 100 MPa

Ansys / Mechanical

2023<mark>/</mark>R1

SEISMIC DESIGNING METHODOLOGY

🐼 EXIDE

Response Spectrum Analysis

Max. deformation observed is < 0.5 mm

Constant Power Declarations per cell (W) at 25°C

/-FT	ECV	3 min	5 min	
Š	1.6	836	684	
-34	1.67	756	618	
12.	1.7	666	593	
НЫ	1.75	565	526	
	1.8	N/A	447	

т	ECV	3 min	5 min
N-F	1.6	899	821
150 ⁴	1.67	841	747
12-4	1.7	782	716
ΗΡΊ	1.75	707	643
ш	1.8	N/A	555

/-FТ	ECV	3 min	5 min
EHP12-560W	1.6	1071	946
	1.67	1013	864
	1.7	942	828
	1.75	854	749
	1.8	N/A	653

ĿΤ	ECV	3 min	5 min
-M0	1.6	1257	1059
-64	1.67	1162	969
P12	1.7	1066	929
EH	1.75	969	844
	1.8	N/A	741

Ę	ECV	3 min	5 min
Ň	1.6	1307	1196
-75	1.67	1186	1098
P12	1.7	1181	1052
H	1.75	1029	961
	1.8	N/A	849